Possible C3 questions from past papers P1—P3

Source of the original question is given in brackets, e.g. [P2 January 2001 Question 1]; a question which has been edited is indicated with an asterisk, e.g. [P3 January 2003 Question 8*].

1. The function f, defined for $x \in \mathbb{R}$, x > 0, is such that

$$f'(x) = x^2 - 2 + \frac{1}{x^2}$$
.

(a) Find the value of
$$f''(x)$$
 at $x = 4$.

(b) Given that
$$f(3) = 0$$
, find $f(x)$.

[P1 June 2001 Question 5]

2. The curve C has equation $y = 2e^x + 3x^2 + 2$. The point A with coordinates (0, 4) lies on C. Find the equation of the tangent to C at A. (5)

[P2 June 2001 Question 1]

3. The root of the equation f(x) = 0, where

$$f(x) = x + \ln 2x - 4$$

is to be estimated using the iterative formula $x_{n+1} = 4 - \ln 2x_n$, with $x_0 = 2.4$.

- (a) Showing your values of $x_1, x_2, x_3,...$, obtain the value, to 3 decimal places, of the root. (4)
- (b) By considering the change of sign of f(x) in a suitable interval, justify the accuracy of your answer to part (a).

[P2 June 2001 Question 2]

4. (i) Prove, by counter-example, that the statement

"
$$\sec(A+B) \equiv \sec A + \sec B$$
, for all A and B" is false. (2)

(ii) Prove that

$$\tan \theta + \cot \theta \equiv 2 \csc 2\theta, \ \theta \neq \frac{n\pi}{2}, n \in \mathbb{Z}.$$
 (5)

[P2 June 2001 Question 4]

5. The function f is given by

$$f: x \mapsto \frac{x}{x^2 - 1} - \frac{1}{x + 1}, x > 1.$$

(a) Show that
$$f(x) = \frac{1}{(x-1)(x+1)}$$
. (3)

The function g is given by

$$g: x \mapsto \frac{2}{x}, x > 0.$$

(c) Solve
$$gf(x) = 70$$
.

[P2 June 2001 Question 7]

- 6. (a) Express $2 \cos \theta + 5 \sin \theta$ in the form $R \cos (\theta \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$. Give the values of R and α to 3 significant figures. (3)
 - (b) Find the maximum and minimum values of $2 \cos \theta + 5 \sin \theta$ and the smallest possible value of θ for which the maximum occurs. (2)

The temperature T °C, of an unheated building is modelled using the equation

$$T = 15 + 2\cos\left(\frac{\pi t}{12}\right) + 5\sin\left(\frac{\pi t}{12}\right), \quad 0 \le t < 24,$$

where *t* hours is the number of hours after 1200.

- (c) Calculate the maximum temperature predicted by this model and the value of t when this maximum occurs. (4)
- (d) Calculate, to the nearest half hour, the times when the temperature is predicted to be $12 \, ^{\circ}\text{C}$.

[P2 June 2001 Question 9]

7. The function f is defined by

$$f: x \bowtie \rightarrow |2x - a|, x \in \mathbb{R},$$

where a is a positive constant.

- (a) Sketch the graph of y = f(x), showing the coordinates of the points where the graph cuts the axes. (2)
- (b) On a separate diagram, sketch the graph of y = f(2x), showing the coordinates of the points where the graph cuts the axes. (2)
- (c) Given that a solution of the equation $f(x) = \frac{1}{2}x$ is x = 4, find the two possible values of a. (4)

[P2 January 2002 Question 3]

8. (*a*) Prove that

$$\frac{1-\cos 2\theta}{\sin 2\theta} \equiv \tan \theta, \ \theta \neq \frac{n\pi}{2}, \ n \in \mathbb{Z}.$$
 (3)

(b) Solve, giving exact answers in terms of π ,

$$2(1-\cos 2\theta) = \tan \theta, \quad 0 < \theta < \pi.$$
 (6)

[P2 January 2002 Question 6]

9. Figure 2

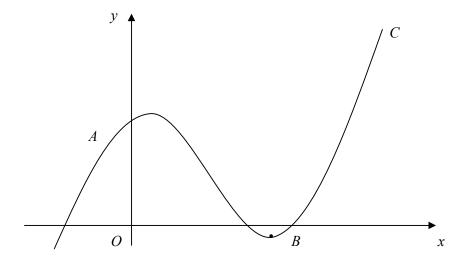


Figure 2 shows part of the curve C with equation y = f(x), where

$$f(x) = 0.5e^x - x^2$$
.

The curve C cuts the y-axis at A and there is a minimum at the point B.

(a) Find an equation of the tangent to
$$C$$
 at A . (4)

The x-coordinate of B is approximately 2.15. A more exact estimate is to be made of this coordinate using iterations $x_{n+1} = \ln g(x_n)$.

(b) Show that a possible form for
$$g(x)$$
 is $g(x) = 4x$. (3)

(c) Using $x_{n+1} = \ln 4x_n$, with $x_0 = 2.15$, calculate x_1 , x_2 and x_3 . Give the value of x_3 to 4 decimal places. (2)

[P2 January 2002 Question 7]

10.
$$f(x) = \frac{2}{x-1} - \frac{6}{(x-1)(2x+1)}, \quad x > 1.$$

(a) Prove that
$$f(x) = \frac{4}{2x+1}$$
. (4)

(c) Find
$$f^{-1}(x)$$
. (3)

(d) Find the range of
$$f^{-1}(x)$$
. (1)

[P2 January 2002 Question 8]

11. Use the derivatives of $\sin x$ and $\cos x$ to prove that the derivative of $\tan x$ is $\sec^2 x$. (4)

[P3 January 2002 Question 2]

12. Express
$$\frac{3}{x^2 + 2x} + \frac{x - 4}{x^2 - 4}$$
 as a single fraction in its simplest form. (7)

[P2 June 2002 Question 2]

13. Figure 1

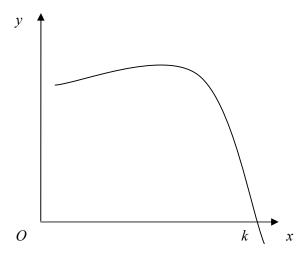


Figure 1 shows a sketch of the curve with equation y = f(x), where

$$f(x) = 10 + \ln(3x) - \frac{1}{2}e^x$$
, $0.1 \le x \le 3.3$.

Given that f(k) = 0,

(a) show, by calculation, that
$$3.1 < k < 3.2$$
. (2)

(b) Find
$$f'(x)$$
. (3)

The tangent to the graph at x = 1 intersects the y-axis at the point P.

(c) (i) Find an equation of this tangent.

(ii) Find the exact y-coordinate of P, giving your answer in the form
$$a + \ln b$$
. (5)

[P2 June 2002 Question 6]

14. $f(x) = x^2 - 2x - 3, x \in \mathbb{R}, x \ge 1.$

- (a) Find the range of f. (1)
- (b) Write down the domain and range of f^{-1} . (2)
- (c) Sketch the graph of f^{-1} , indicating clearly the coordinates of any point at which the graph intersects the coordinate axes. (4)

Given that $g(x) = |x - 4|, x \in \mathbb{R}$,

- (d) find an expression for gf(x). (2)
- (e) Solve gf(x) = 8.

[P2 June 2002 Question 8]

15. Express $\frac{y+3}{(y+1)(y+2)} - \frac{y+1}{(y+2)(y+3)}$ as a single fraction in its simplest form.

[P2 November 2002 Question 1]

(5)

- 16. (a) Express 1.5 sin $2x + 2 \cos 2x$ in the form $R \sin (2x + \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$, giving your values of R and α to 3 decimal places where appropriate. (4)
 - (b) Express $3 \sin x \cos x + 4 \cos^2 x$ in the form $a \cos 2x + b \sin 2x + c$, where a, b and c are constants to be found. (2)
 - (c) Hence, using your answer to part (a), deduce the maximum value of $3 \sin x \cos x + 4 \cos^2 x$. (2)

[P2 November 2002 Question 3]

- 17. The curve C with equation $y = p + qe^x$, where p and q are constants, passes through the point (0, 2). At the point $P(\ln 2, p + 2q)$ on C, the gradient is 5.
 - (a) Find the value of p and the value of q. (5)

The normal to C at P crosses the x-axis at L and the y-axis at M.

(b) Show that the area of \triangle *OLM*, where *O* is the origin, is approximately 53.8. (5)

[P2 November 2002 Question 5]

18.

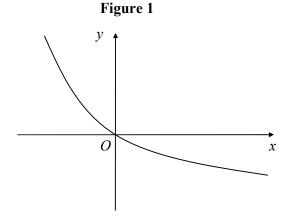


Figure 1 shows a sketch of the curve with equation $y = e^{-x} - 1$.

(a) Copy Fig. 1 and on the same axes sketch the graph of $y = \frac{1}{2} |x - 1|$. Show the coordinates of the points where the graph meets the axes. (2)

The x-coordinate of the point of intersection of the graph is α .

(b) Show that
$$x = \alpha$$
 is a root of the equation $x + 2e^{-x} - 3 = 0$. (3)

(c) Show that
$$-1 < \alpha < 0$$
. (2)

The iterative formula $x_{n+1} = -\ln\left[\frac{1}{2}(3-x_n)\right]$ is used to solve the equation $x + 2e^{-x} - 3 = 0$.

(d) Starting with
$$x_0 = -1$$
, find the values of x_1 and x_2 . (2)

(e) Show that, to 2 decimal places,
$$\alpha = -0.58$$
.

[P2 November 2002 Question 6]

19. The function f is defined by f: $x \mapsto \frac{3x-1}{x-3}$, $x \in \mathbb{R}$, $x \neq 3$.

(a) Prove that
$$f^{-1}(x) = f(x)$$
 for all $x \in \mathbb{R}, x \neq 3$.

(b) Hence find, in terms of k,
$$ff(k)$$
, where $x \neq 3$.

Figure 3

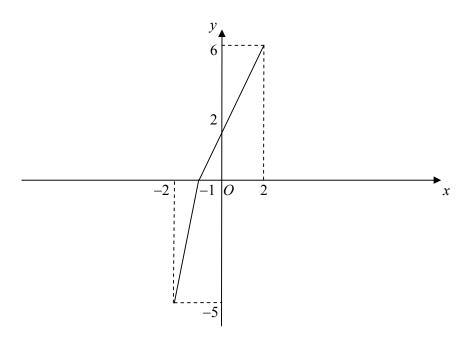


Figure 3 shows a sketch of the one-one function g, defined over the domain $-2 \le x \le 2$.

(c) Find the value of
$$fg(-2)$$
. (3)

(d) Sketch the graph of the inverse function
$$g^{-1}$$
 and state its domain. (3)

The function h is defined by h: $x \mapsto 2g(x-1)$.

[P2 November 2002 Question 8]

20. Express
$$\frac{x}{(x+1)(x+3)} + \frac{x+12}{x^2-9}$$
 as a single fraction in its simplest form. (6)

[P2 January 2003 Question 1]

PMT

- 21. (a) Sketch the graph of y = |2x + a|, a > 0, showing the coordinates of the points where the graph meets the coordinate axes. (2)
 - (b) On the same axes, sketch the graph of $y = \frac{1}{x}$. (1)
 - (c) Explain how your graphs show that there is only one solution of the equation

$$x | 2x + a | -1 = 0. {1}$$

(d) Find, using algebra, the value of x for which $x \mid 2x + 1 \mid -1 = 0$. (3)

[P2 January 2003 Question 3]

- 22. The curve with equation $y = \ln 3x$ crosses the x-axis at the point P(p, 0).
 - (a) Sketch the graph of $y = \ln 3x$, showing the exact value of p. (2)

The normal to the curve at the point Q, with x-coordinate q, passes through the origin.

- (b) Show that x = q is a solution of the equation $x^2 + \ln 3x = 0$.
- (c) Show that the equation in part (b) can be rearranged in the form $x = \frac{1}{3}e^{-x^2}$. (2)
- (d) Use the iteration formula $x_{n+1} = \frac{1}{3}e^{-x_n^2}$, with $x_0 = \frac{1}{3}$, to find x_1, x_2, x_3 and x_4 . Hence write down, to 3 decimal places, an approximation for q.

[P2 January 2003 Question 6]

- 23. (a) Express $\sin x + \sqrt{3} \cos x$ in the form $R \sin (x + \alpha)$, where R > 0 and $0 < \alpha < 90^\circ$.
 - (b) Show that the equation $\sec x + \sqrt{3} \csc x = 4$ can be written in the form

$$\sin x + \sqrt{3}\cos x = 2\sin 2x. \tag{3}$$

(c) Deduce from parts (a) and (b) that $\sec x + \sqrt{3} \csc x = 4$ can be written in the form

$$\sin 2x - \sin (x + 60^{\circ}) = 0.$$
 (1)

[P2 January 2003 Question 7*]

24.

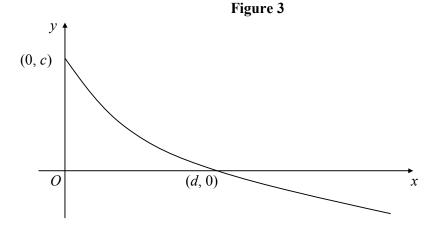


Figure 3 shows a sketch of the curve with equation y = f(x), $x \ge 0$. The curve meets the coordinate axes at the points (0, c) and (d, 0).

In separate diagrams sketch the curve with equation

(a)
$$y = f^{-1}(x)$$
,

(b)
$$y = 3f(2x)$$
.

Indicate clearly on each sketch the coordinates, in terms of c or d, of any point where the curve meets the coordinate axes.

Given that f is defined by

$$f: x \mapsto 3(2^{-x}) - 1, x \in \mathbb{R}, x \ge 0,$$

- (c) state
 - (i) the value of c,

(d) Find the value of d, giving your answer to 3 decimal places. (3)

The function g is defined by

$$g: x \to \log_2 x, \ x \in \mathbb{R}, \ x \ge 1.$$

(e) Find fg(x), giving your answer in its simplest form. (3)

[P2 January 2003 Question 8

25. (a) Simplify
$$\frac{x^2 + 4x + 3}{x^2 + x}$$
. (2)

(b) Find the value of x for which
$$\log_2(x^2 + 4x + 3) - \log_2(x^2 + x) = 4$$
. (4)

[P2 June 2003 Question 1]

26. The functions f and g are defined by

f:
$$x \mapsto x^2 - 2x + 3, x \in \mathbb{R}, \ 0 \le x \le 4$$
,

g: $x \mapsto \lambda x^2 + 1$, where λ is a constant, $x \in \mathbb{R}$.

- (a) Find the range of f. (3)
- (b) Given that gf(2) = 16, find the value of λ . (3)

[P2 June 2003 Question 2]

27. Figure 1

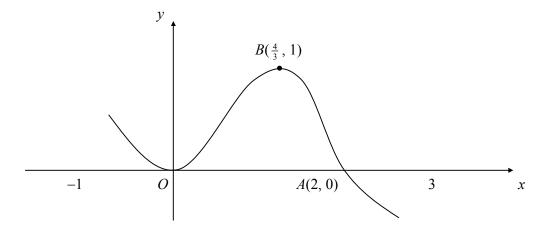


Figure 1 shows a sketch of the curve with equation y = f(x), $-1 \le x \le 3$. The curve touches the x-axis at the origin O, crosses the x-axis at the point A(2, 0) and has a maximum at the point $B(\frac{4}{3}, 1)$.

In separate diagrams, show a sketch of the curve with equation

(a)
$$y = f(x+1)$$
,

(b)
$$y = |f(x)|$$
,

(c)
$$y = f(|x|)$$
,

marking on each sketch the coordinates of points at which the curve

- (i) has a turning point,
- (ii) meets the x-axis.

[P2 June 2003 Question 4]

28. (a) Sketch, on the same set of axes, the graphs of

$$y = 2 - e^{-x}$$
 and $y = \sqrt{x}$. (3)

[It is not necessary to find the coordinates of any points of intersection with the axes.]

Given that $f(x) = e^{-x} + \sqrt{x} - 2$, $x \ge 0$,

- (b) explain how your graphs show that the equation f(x) = 0 has only one solution, (1)
- (c) show that the solution of f(x) = 0 lies between x = 3 and x = 4. (2)

The iterative formula $x_{n+1} = (2 - e^{-x_n})^2$ is used to solve the equation f(x) = 0.

(d) Taking $x_0 = 4$, write down the values of x_1 , x_2 , x_3 and x_4 , and hence find an approximation to the solution of f(x) = 0, giving your answer to 3 decimal places. (4)

[P2 June 2003 Question 5]

28a. (i) Given that
$$\cos(x+30)^\circ = 3\cos(x-30)^\circ$$
, prove that $\tan x^\circ = -\frac{\sqrt{3}}{2}$. (5)

- (ii) (a) Prove that $\frac{1-\cos 2\theta}{\sin 2\theta} = \tan \theta$.
 - (b) Verify that $\theta = 180^{\circ}$ is a solution of the equation $\sin 2\theta = 2 2 \cos 2\theta$. (1)
 - (c) Using the result in part (a), or otherwise, find the other two solutions, $0 < \theta < 360^\circ$, of the equation using $\sin 2\theta = 2 2 \cos 2\theta$.

(4)

[P2 June 2003 Question 8]

29. (a) Express as a fraction in its simplest form

$$\frac{2}{x-3} + \frac{13}{x^2 + 4x - 21}. ag{3}$$

(b) Hence solve

$$\frac{2}{x-3} + \frac{13}{x^2 + 4x - 21} = 1.$$
 (3)

[P2 November 2003 Question 1]

30. Prove that

$$\frac{1-\tan^2\theta}{1+\tan^2\theta} \equiv \cos 2\theta \ . \tag{4}$$

[P2 November 2003 Question 5*]

31. The functions f and g are defined by

$$f: x \mapsto |x - a| + a, x \in \mathbb{R},$$

$$g: x \mapsto 4x + a, \qquad x \in \mathbb{R}.$$

where a is a positive constant.

- (a) On the same diagram, sketch the graphs of f and g, showing clearly the coordinates of any points at which your graphs meet the axes. (5)
- (b) Use algebra to find, in terms of a, the coordinates of the point at which the graphs of f and g intersect. (3)
- (c) Find an expression for fg(x). (2)
- (d) Solve, for x in terms of a, the equation

$$fg(x) = 3a. ag{3}$$

[P2 November 2003 Question 7]

32. The curve *C* has equation y = f(x), where

$$f(x) = 3 \ln x + \frac{1}{x}, \quad x > 0.$$

The point P is a stationary point on C.

- (a) Calculate the x-coordinate of P. (4)
- (b) Show that the y-coordinate of P may be expressed in the form $k k \ln k$, where k is a constant to be found. (2)

The point Q on C has x-coordinate 1.

(c) Find an equation for the normal to C at Q. (4)

The normal to C at Q meets C again at the point R.

- (d) Show that the x-coordinate of R
 - (i) satisfies the equation $6 \ln x + x + \frac{2}{x} 3 = 0$,
 - (ii) lies between 0.13 and 0.14. (4)

[P2 November 2003 Question 8]

33. The function f is given by $f: x \mapsto 2 + \frac{3}{x+2}$, $x \in \mathbb{R}$, $x \neq -2$.

(a) Express
$$2 + \frac{3}{x+2}$$
 as a single fraction. (1)

- (b) Find an expression for $f^{-1}(x)$. (3)
- (c) Write down the domain of f^{-1} . (1)

[P2 January 2004 Question 1]

34.	The function f is even and has domain \mathbb{R}	. For $x \ge 0$, $f(x) = x^2 - 4ax$, where a is a positive
	constant.	

- (a) In the space below, sketch the curve with equation y = f(x), showing the coordinates of all the points at which the curve meets the axes. (3)
- (b) Find, in terms of a, the value of f(2a) and the value of f(-2a). (2)

Given that a = 3,

(c) use algebra to find the values of x for which f(x) = 45. (4)

[P2 January 2004 Question 4]

35. Given that $y = \log_a x$, x > 0, where a is a positive constant,

(a) (i) express
$$x$$
 in terms of a and y , (1)

(ii) deduce that
$$\ln x = y \ln a$$
. (1)

(b) Show that
$$\frac{dy}{dx} = \frac{1}{x \ln a}$$
. (2)

The curve C has equation $y = \log_{10} x$, x > 0. The point A on C has x-coordinate 10. Using the result in part (b),

(c) find an equation for the tangent to
$$C$$
 at A . (4)

The tangent to C at A crosses the x-axis at the point B.

(d) Find the exact x-coordinate of
$$B$$
. (2)

[P2 January 2004 Question 5]

- **36.** (i) (a) Express (12 cos θ 5 sin θ) in the form R cos (θ + α), where R > 0 and $0 < \alpha < 90^{\circ}$.
 - **(4)**

(b) Hence solve the equation

$$12 \cos \theta - 5 \sin \theta = 4$$

for $0 < \theta < 90^{\circ}$, giving your answer to 1 decimal place. (3)

(ii) Solve

$$8 \cot \theta - 3 \tan \theta = 2$$
,

for $0 < \theta < 90^{\circ}$, giving your answer to 1 decimal place. (5)

[P2 January 2004 Question 8]

37. Express as a single fraction in its simplest form

$$\frac{x^2 - 8x + 15}{x^2 - 9} \times \frac{2x^2 + 6x}{(x - 5)^2}.$$

(4)

[P2 June 2004 Question 1]

- **38.** (i) Given that $\sin x = \frac{3}{5}$, use an appropriate double angle formula to find the exact value of $\sec 2x$.
 - (4)

(4)

(ii) Prove that

$$\cot 2x + \csc 2x \equiv \cot x, \qquad \left(x \neq \frac{n\pi}{2}, n \in \mathbb{Z}\right).$$

[P2 June 2004 Question 2]

39.
$$f(x) = x^3 + x^2 - 4x - 1.$$

The equation f(x) = 0 has only one positive root, α .

(a) Show that f(x) = 0 can be rearranged as

$$x = \sqrt{\left(\frac{4x+1}{x+1}\right)}, x \neq -1.$$
 (2)

The iterative formula $x_{n+1} = \sqrt{\frac{4x_n + 1}{x_n + 1}}$ is used to find an approximation to α .

- (b) Taking $x_1 = 1$, find, to 2 decimal places, the values of x_2 , x_3 and x_4 . (3)
- (c) By choosing values of x in a suitable interval, prove that $\alpha = 1.70$, correct to 2 decimal places.
- (d) Write down a value of x_1 for which the iteration formula $x_{n+1} = \sqrt{\frac{4x_n + 1}{x_n + 1}}$ does *not* produce a valid value for x_2 .

Justify your answer.

(2)

[P2 June 2004 Question 5]

$$f(x) = x + \frac{e^x}{5}, \qquad x \in \mathbb{R}.$$

(a) Find f'(x).

(2)

The curve C, with equation y = f(x), crosses the y-axis at the point A.

(b) Find an equation for the tangent to C at A.

(3)

(c) Complete the table, giving the values of $\sqrt{\left(x + \frac{e^x}{5}\right)}$ to 2 decimal places.

x	0	0.5	1	1.5	2
$\sqrt{\left(x+\frac{\mathrm{e}^x}{5}\right)}$	0.45	0.91			

(2)

[P2 June 2004 Question 7*]

41. The function f is given by

f:
$$x \mapsto \ln(3x - 6)$$
, $x \in \mathbb{R}$, $x > 2$.

(a) Find
$$f^{-1}(x)$$
.

(3)

(b) Write down the domain of f⁻¹ and the range of f⁻¹.

(2)

(c) Find, to 3 significant figures, the value of x for which f(x) = 3.

(2)

The function g is given by

g:
$$x \mapsto \ln |3x - 6|$$
, $x \in \mathbb{R}$, $x \neq 2$.

(d) Sketch the graph of y = g(x).

(3)

(e) Find the exact coordinates of all the points at which the graph of y = g(x) meets the coordinate axes.

(3)

[P2 June 2004 Question 8]